Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available January 1, 2026
- 
            Hypothesis Through a large parameter space, electric fields can tune colloidal interactions and forces leading to diverse static and dynamical structures. So far, however, field-driven interactions have been limited to dipole-dipole and hydrodynamic contributions. Nonetheless, in this work, we propose that under the right conditions, electric fields can also induce interactions based on local chemical fields and diffusiophoretic flows. Experiments Herein, we present a strategy to generate and measure 3D chemical gradients under electric fields. In this approach, faradaic reactions at electrodes induce global pH gradients that drive long-range transport through electrodiffusiophoresis. Simultaneously, the electric field induces local pH gradients by driving the particle's double layer far from equilibrium. Findings As a result, while global pH gradients lead to 2D focusing away from electrodes, local pH gradients induce aggregation in the third dimension. Evidence points to a mechanism of interaction based on diffusiophoresis. Interparticle interactions display a strong dependence on surface chemistry, zeta potential and diameter of particles. Furthermore, pH gradients can be readily tuned by adjusting the voltage and frequency of the electric field. For large Péclet numbers, we observed a collective chemotactic-like collapse of particles. Remarkably, such collapse occurs without reactions at a particle's surface. By mixing particles with different sizes, we also demonstrate, through experiments and Brownian dynamics simulations, the emergence of non-reciprocal interactions, where small particles are more drawn towards large ones.more » « lessFree, publicly-accessible full text available January 1, 2026
- 
            Free, publicly-accessible full text available November 26, 2025
- 
            Ferroelectric tunnel junctions (FTJs) based on epitaxial complex oxide heterostructures are promising building blocks for developing low power nanoelectronics and neuromorphic computing. FTJs consisting of correlated oxide electrodes have distinct advantages in size scaling but only yield moderate electroresistance (ER) at room temperature due to the challenge in imposing asymmetric interfacial screening and large modulation of the tunneling potential profile. Here, we achieve large ER in all-oxide FTJs by paring a correlated metal with a narrow bandgap Mott insulator as electrodes. We fabricate epitaxial FTJs composed of 2.8 and 4 nm PbZr0.2Ti0.8O3 tunnel barriers sandwiched between correlated oxides LaNiO3 and Sr3Ir2O7 electrodes. An ER of 6500% has been observed at room temperature, which increases to over 105% at 100 K. The high ER can be attributed to ferroelectric polarization induced metal–insulator transition in interfacial Sr3Ir2O7, which enhances the potential asymmetry for the tunnel barrier. The temperature dependence of tunneling current shows that direct tunneling dominates in the on state, while the off-state conduction transitions from thermally activated behavior at high temperatures to Glazman–Matveev defect-mediated inelastic tunneling at low temperatures. Our study provides a viable material strategy for designing all-oxide FTJs with high ER, facilitating their implementation in nonvolatile memories and energy-efficient computing devices.more » « less
- 
            Molecular-scale junctions (MSJs) have been considered the ideal testbed for probing physical and chemical processes at the molecular scale. Due to nanometric confinement, charge and energy transport in MSJs are governed by quantum mechanically dictated energy profiles, which can be tuned chemically or physically with atomic precision, offering rich possibilities beyond conventional semiconductor devices. While charge transport in MSJs has been extensively studied over the past two decades, understanding energy conversion and transport in MSJs has only become experimentally attainable in recent years. As demonstrated recently, by tuning the quantum interplay between the electrodes, the molecular core, and the contact interfaces, energy processes can be manipulated to achieve desired functionalities, opening new avenues for molecular electronics, energy harvesting, and sensing applications. This Review provides a comprehensive overview and critical analysis of various forms of energy conversion and transport processes in MSJs and their associated applications. We elaborate on energy-related processes mediated by the interaction between the core molecular structure in MSJs and different external stimuli, such as light, heat, electric field, magnetic field, force, and other environmental cues. Key topics covered include photovoltaics, electroluminescence, thermoelectricity, heat conduction, catalysis, spin-mediated phenomena, and vibrational effects. The review concludes with a discussion of existing challenges and future opportunities, aiming to facilitate in-depth future investigation of promising experimental platforms, molecular design principles, control strategies, and new application scenarios.more » « lessFree, publicly-accessible full text available December 1, 2025
- 
            The complex distribution of functional groups in carbohydrates, coupled with their strong solvation in water, makes them challenging targets for synthetic receptors. Despite extensive research into various molecular frameworks, most synthetic carbohydrate receptors have exhibited low affinities, and their interactions with sugars in aqueous environments remain poorly understood. In this work, we present a simple pyridinium-based hydrogen-bonding receptor derived from a subtle structural modification of a well-known tetralactam macrocycle. This small structural change resulted in a dramatic enhancement of glucose binding affinity, increasing from 56 M−1 to 3001 M−1. Remarkably, the performance of our synthetic lectin surpasses that of the natural lectin, concanavalin A, by over fivefold. X-ray crystallography of the macrocycle–glucose complex reveals a distinctive hydrogen bonding pattern, which allows for a larger surface overlap between the receptor and glucose, contributing to the enhanced affinity. Furthermore, this receptor possesses allosteric binding sites, which involve chloride binding and trigger receptor aggregation. This unique allosteric process reveals the critical role of structural flexibility in this hydrogen-bonding receptor for the effective recognition of sugars. We also demonstrate the potential of this synthetic lectin as a highly sensitive glucose sensor in aqueous solutions.more » « lessFree, publicly-accessible full text available November 27, 2025
- 
            Abstract Entanglement is a striking feature of quantum mechanics, and it has a key property called unextendibility. In this paper, we present a framework for quantifying and investigating the unextendibility of general bipartite quantum states. First, we define the unextendible entanglement, a family of entanglement measures based on the concept of a state-dependent set of free states. The intuition behind these measures is that the more entangled a bipartite state is, the less entangled each of its individual systems is with a third party. Second, we demonstrate that the unextendible entanglement is an entanglement monotone under two-extendible quantum operations, including local operations and one-way classical communication as a special case. Normalization and faithfulness are two other desirable properties of unextendible entanglement, which we establish here. We further show that the unextendible entanglement provides efficiently computable benchmarks for the rate of exact entanglement or secret key distillation, as well as the overhead of probabilistic entanglement or secret key distillation.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available