Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Atmospheric water vapor is an abundant and renewable resource that can alleviate growing water scarcity. Hybrid hydrogel desiccants composed of hygroscopic salts hold significant promise for atmospheric water harvesting (AWH) due to their increased capacity for water uptake. Thus far, many efforts in fabricating these desiccants require multistep processes, where the salt impregnation is achieved post-hydrogel fabrication. Here, we develop a scalable wet spinning methodology using aramid nanofibers (ANFs) to template and coagulate hydroxypropyl cellulose (HPC) into filaments in a coagulation bath consisting of water and lithium chloride (LiCl). HPC serves as the matrix to retain the captured water vapor, and later releases it upon heating. ANFs serve as the physical cross-linker between HPC, allowing for wet spinning at a speed up to 61 m h–1. The composite filaments achieve up to 0.55 g g–1 water uptake at 30% relative humidity (RH) and 21 °C, reaching 80% saturation in 40 min. With a lower critical solution temperature of 39 °C, the desiccant filaments can release up to 72% of the captured water at 60 °C after 30 min. In an AWH chamber, the filaments can achieve daily water production of 5.21 L kg–1 day–1 at 30% RH and 21 °C.more » « lessFree, publicly-accessible full text available November 26, 2026
-
Free, publicly-accessible full text available October 1, 2026
-
Free, publicly-accessible full text available October 22, 2026
-
Hypothesis Through a large parameter space, electric fields can tune colloidal interactions and forces leading to diverse static and dynamical structures. So far, however, field-driven interactions have been limited to dipole-dipole and hydrodynamic contributions. Nonetheless, in this work, we propose that under the right conditions, electric fields can also induce interactions based on local chemical fields and diffusiophoretic flows. Experiments Herein, we present a strategy to generate and measure 3D chemical gradients under electric fields. In this approach, faradaic reactions at electrodes induce global pH gradients that drive long-range transport through electrodiffusiophoresis. Simultaneously, the electric field induces local pH gradients by driving the particle's double layer far from equilibrium. Findings As a result, while global pH gradients lead to 2D focusing away from electrodes, local pH gradients induce aggregation in the third dimension. Evidence points to a mechanism of interaction based on diffusiophoresis. Interparticle interactions display a strong dependence on surface chemistry, zeta potential and diameter of particles. Furthermore, pH gradients can be readily tuned by adjusting the voltage and frequency of the electric field. For large Péclet numbers, we observed a collective chemotactic-like collapse of particles. Remarkably, such collapse occurs without reactions at a particle's surface. By mixing particles with different sizes, we also demonstrate, through experiments and Brownian dynamics simulations, the emergence of non-reciprocal interactions, where small particles are more drawn towards large ones.more » « less
-
Free, publicly-accessible full text available August 1, 2026
-
Ferroelectric tunnel junctions (FTJs) based on epitaxial complex oxide heterostructures are promising building blocks for developing low power nanoelectronics and neuromorphic computing. FTJs consisting of correlated oxide electrodes have distinct advantages in size scaling but only yield moderate electroresistance (ER) at room temperature due to the challenge in imposing asymmetric interfacial screening and large modulation of the tunneling potential profile. Here, we achieve large ER in all-oxide FTJs by paring a correlated metal with a narrow bandgap Mott insulator as electrodes. We fabricate epitaxial FTJs composed of 2.8 and 4 nm PbZr0.2Ti0.8O3 tunnel barriers sandwiched between correlated oxides LaNiO3 and Sr3Ir2O7 electrodes. An ER of 6500% has been observed at room temperature, which increases to over 105% at 100 K. The high ER can be attributed to ferroelectric polarization induced metal–insulator transition in interfacial Sr3Ir2O7, which enhances the potential asymmetry for the tunnel barrier. The temperature dependence of tunneling current shows that direct tunneling dominates in the on state, while the off-state conduction transitions from thermally activated behavior at high temperatures to Glazman–Matveev defect-mediated inelastic tunneling at low temperatures. Our study provides a viable material strategy for designing all-oxide FTJs with high ER, facilitating their implementation in nonvolatile memories and energy-efficient computing devices.more » « less
An official website of the United States government

Full Text Available